Near minimally normed spline quasi-interpolants on uniform partitions

نویسندگان

  • D. Barrera
  • M. J. Ibáñez
چکیده

Spline quasi-interpolants are local approximating operators for functions or discrete data. We consider the construction of discrete and integral spline quasi-interpolants on uniform partitions of the real line having small infinite norms. We call them near minimally normed quasi-interpolants: they are exact on polynomial spaces and minimize a simple upper bound of their infinite norms. We give precise results for cubic and quintic quasi-interpolants. Also the quasi-interpolation error is considered, as well as the advantage that these quasi-interpolants present when approximating functions with isolated discontinuities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Univariate Spline Quasi - Interpolants and Applications to Numerical Analysis

We describe some new univariate spline quasi-interpolants on uniform partitions of bounded intervals. Then we give some applications to numerical analysis: integration, differentiation and approximation of zeros.

متن کامل

Near-Best quasi-interpolants associated with H-splines on a three-direction mesh

Spline quasi-interpolants with best approximation orders and small norms are useful in several applications. In this paper, we construct the so-called near-best discrete and integral quasi-interpolants based on H-splines, i.e., B-splines with regular hexagonal supports on the uniform three-directional mesh of the plane. These quasi-interpolants are obtained so as to be exact on some space of po...

متن کامل

Quadratic spline quasi-interpolants on Powell-Sabin partitions

In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.

متن کامل

3 M ay 2 00 4 Near - best univariate spline discrete quasi - interpolants on non - uniform partitions

Univariate spline discrete quasi-interpolants (abbr. dQIs) are approximation operators using B-spline expansions with coefficients which are linear combinations of discrete values of the function to be approximated. When working with nonuniform partitions, the main challenge is to find dQIs which have both good approximation orders and bounded uniform norms independent of the given partition. N...

متن کامل

Numerical integration using spline quasi-interpolants

In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004